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Abstract. We demonstrate circumstances in which gradient systems can minimize their free 
energies with a spatially turbulent planform. 

When subject to external stresses, spatially extended, continuous, dissipative systems 
far from equilibrium can undergo a series of symmetry breaking phase transitions in 
which certain planforms or patterns are preferentially amplified. Near the transition, 
the nonlinear competition between degenerate states, each of which is linearly amplified 
at the same rate, can lead to stationary periodic patterns such as rolls [ 11, squares, 
rhombi [2], hexagons [3] which tile the plane if the system is two-dimensional or to 
equivalent periodic crystal structures in three dimensions. Such patterns are observed 
in convecting Buids, liquid crystals, counterpropagating light beams, Raman lasers, 
and in a whole varieg of natural phenomena. Very recently, standing wave 
quasiperiodic pattems, analogous to a two-dimensional dodecahedral quasicrystal have 
been observed by Edwards and Fauve [4] in a modification of the Faraday experiment. 
Again, the pattern is dynamically generated and sidewalls play no role. 

In each of these examples, the degeneracy is infinite and is simply a reflection of 
the continuous rotational symmetry associated with an infinite planar geometry that 
is a good approximation when the horizontal dimension of the experiment is much 
larger than the pattern wavelength. The horizontal structure of all modes which are 
equally amplified is exp ik.x where each k lies on a circle Ikl= k,. The roll, square 
and hexagon pattems correspond to final states in which only a finite number of modes 
(respectively one, two, three) participate. The purpose of this letter is to explore 
circumstances in which a very large (and potentially infinite) number of modes, each 
of whose wavevectors lie on the critical circle, participate. From the physical point of 
view, the key ingredient in producing such a state is to have the nonlinear coupling 
between modes much weaker than the self-coupling feedback. In this way, each mode 
can draw more or less independently on the source of potential energy and thereby 
maximize (minimize) the transport properties (the free energy) of the system. In these 
cases, the asymptotic planforms will he spatially turbulent and spatial correlations of 
the fields will decay. At the end of this letter, we briefly mention two areas where a 
manifestation of spatially turbulent planforms might be seen. 

Near onset, the fields giving rise to the pattern can be divided into two components, 
active and passive. The active modes, the number of which depends on the degeneracy 
of the system at the phase transition, draw directly on the source of external stress. 
Their amplitudes {Aj ] ,  j = 1,. . . , N, are called order parameters. The passive modes 
on the other hand may be regenerated through nonlinear interactions by the active 

0305470/93/080429+06$07.50 0 1993 IOP Publishing Ltd L429 



L430 Letter to the Edjtor 

modes but their amplitudes {&}, k = 1 , .  . . , M, are algebraically slaved to those of the 
active modes through a graph, Bk = &(A;), called the centre manifold. After a short 
relaxation time, the dynamics of the system takes place on this manifold &({A,]). 
Ignoring quadratic interactions, namely cubic terms in the free energy which bias the 
outcome in favour of a hexagonal lattice, the dynamics is governed by the set of Landau 
equations 

The properties of the matrix p = {pjJ determine the asymptotic state of the system. In 
a two-dimensional system with rotational and translational symmetry, the active set is 
spanned by Fourier modes {exp i4.x) where each k; lies on a critical circle lk,l= k, 
reflecting the fact that the resulting pattern will have a preferred wavelength A = 2mk;’ 
but no preferred direction. We represent the field w ( x ,  y, 1 )  as 2 Real (Z;, A, exp ik,.x) 
where N is potentially very large. The order parameter equations ( 1 )  are invariant 
under arbitrary phase twists, A, + A, exp idj, reflecting the continuous translational 
symmetry of the original system and the state whose stability is lost at p =O. If the 
matrix p is real and symmetric, (1) is gradient with free energy 

The key idea of this letter is that, if the state that minimizes is the one in which all 
modes share the resources equally so that 1AJ2 = A’, j =  1,. . . , N, then the attractor 
will be a time independent but spatially random field because the phases 4, are arbitrary. 
We call this spin-glass-like state a turbulent crystal, although we admit the name is a 
misnomer. 

We want to emphasize again that the fact that the phases 4, are arbitrary is simply 
a reflection of the property of translational invariance (in the horizontal directions) 
of the original system under study so that, if expiiyx is an active mode, then so is 
expik;.(x-+) for each j .  The Landau equations ( 1 )  for the order parameters are a 
valid approximation near onset, that is, in the small p limit. All higher interactions 
are of higher order in p .  The only other terms possible at this order (or lower orders) 
of approximation are quadratic terms. If present, they would have the effect of biasing 
the outcome towards hexagonal planforms although their presence does not guarantee 
that outcome for all values of (small) p and p. However, they are often absent because 
a large class of systems have an additional symmetry which inhibits the broken parity 
(high intensity in the middle, low intensity on the outside or vice versa) associated 
with hexagonal planforms. For example, in horizontal convection layers with symmetry 
about the mid-plane, the quadratic terms in ( 1 )  have zero coefficients. We stress, 
therefore, that the order parameter equations (1) hold for a wide class of systems near 
onset. The property that they are invariant under the transformation A, + A, exp i$, is 
purely a reflection of the translational invariance of the solutions whose stability has 
been lost at p = 0. The stationary planform realized for positive values of p depends 
entirely on the properties of p. the matrix of coupling coefficients. 

The main idea of this letter draws on several previous works. Mermin and Troian 
[5] and, more recently, Malomed, Nepomayaschii and Tribel’skii [6]  have used similar 
approaches to argue how competition between the various allowable configurations 
leads naturally to the appearance of quasicrystalline order and other exotic planforms. 
Because of a rather special choice of model and a somewhat loose conversion of the 
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free energy F into an equivalent expansion in terms of the order parameters, the 
former authors conclude that planforms with a small number of wavevectors would 
always be favoured. The latter set of authors did not relate the choice of matrix elements 
pil to an underlying field theory but worked directly with (1). This was not crucial as 
they dealt with wavevectors with finite angular separations. However, they missed a 
general property of the matrix elements obvious from combinatorial arguments, namely 
that pj l+  Z& as kl+ k,, which is important as the number of wavevectors increases. 

The observation that random phases leads to a turbulent crystal draws on the works 
of Voros [7], Berry [PI, McDonald and Kaufman [9] and Gutzwiller [lo] who point 
out that a similar property obtains for high energy wavefunctions of Schrodinger’s 
equation. 

To see the circumstances under which the asymptotic states of (1) can give rise to 
a turbulent crystal, we consider the behaviour of the system govemed by the free energy 

n 1 + f((v’+ q’,)u,)’+$E’u’,+ Er,u,w’ 
,=1 

(3) 

in the neighbourhood p>O of the phase transition at p=O at which the solution 
w = U, = O  loses its stability. Writing w = E z l  (Aj exp ik,*x+(*))+O(p3”), where A, 
is of order pl” and U, =pu,,+. . . , it is easy to see that, for p<< E’, we obtain (1) 
with pj f=p(0 ) ,  ~ = T I ~ - ~ I / J V ,  pJ=pO=p(O)/2 where 

p(~)=24a,+(8+16cos’ e)a,- C xi’, 
n 

, = I  

We remark on several important properties of the coupling matrix p. First, it is 
important to realize that the off-diagonal matrix element p,, will be exactly twice the 
on-diagonal self-interaction element p, as kl + k,. This is a general property and depends 
on the simple combinatorial observation that the mutual interaction kj i- kl - kl = k, can 
be realized twice as often as the self interaction. This means that rhombi with narrow 
angles are unlikely because if the off-diagonal elements of p dominate, rolls are the 
planform which minimizes the free energy. Second, the subsidiary fields U, always 
lead to negative values of the coupling function p(0) .  For a supercritical bifurcation 
(second-order phase transition) therefore, we require the presence of higher order 
tenns in the free energy of the primary field: Nevertheless, the subsidiary fields a play 
a crucially important role in designing the shape of p ( 0 )  necessary for turbulent 
crystals. As noted by Mermin and Troian [4], their contribution is largest when there 
is a strong triad interaction between two wavevectors k, and kl of the primary field w 
and the wavevector q,, with lki + kfl = lqml, of the mth subsidiary field. Third, contrary 
to the conclusion of Mermin and Troian who do not take advantage of the shape of 
p ( 0 )  (their p ( 0 )  is essentially constant), we shall see that if P ( 0 )  <$p(O) (a situation 
most easily realized when the number of subsidiary fields n is large) over most of the 
interval -m < 0 < T, planforms with many wavevectors are indeed preferred. Fourth, 
the coupling function p ( 0 )  = p ( m -  0) = p ( - 0 )  is even and symmetric about 0 = ~ / 2 ,  
a manifestation of an underlying reflection symmetry in the original free energy. Fifth, 
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the matrix p has circulant form with first row (Po ,  P I , .  . . , P N - ] )  where P, = P ( r v / N )  = 
P ( ( N  - r ) v / N )  = P N - ,  and each new row is obtained by cycling the previous one so 
that the second row is (PN-I  = P I ,  PO, P I , .  . . , P N - 2 )  and so on. 

Roll solutions of (1) are given by A, = p&’, A, = 0, j # 1. Rhombi are given by 
Al=A,=p(Po+P,- l ) - l ,Aj=O,j# 1, r.Squaresareaspecialcase.Theturhulentcrystal 
solution is A, = A, = . . . = A N  = p(po+ PI +. . . + & - ] ) - I .  The free energies P of these 
states are -pz(2Po)-’, -2p2(2(Po+P,-,))-’ and -Np2(2 (p0+ .  . respec- 
tively. More complicated solutions for which a certain subset of the N modes have 
each zero amplitude, and the remaining members, which are no longer distributed at 
equal distances along the circle, have non-zero and in general non-equal amplitudes 
lAj[, are not easy to write down. Moreover, as far as we know, there is no known 
necessary and sufficient condition on the elements of the matrix p which makes the 
corresponding free energy I’ of any of the solutions mentioned above an absolute 
minimumt. Here we offer a sufficient condition, a recipe for constructing a coupling 
function P ( B ) ,  for which the turbulent crystal gives the lowest free energy. 

is strongly diagonally dominant, 
Po> P, = p  say for all r f 0, then the free energy of the turbulent crystal is ( -p2/2)(p+ 
( P 0 - p ) / N ) - ’  which decreases as Nincreases. It is intuitively reasonable to conclude 
that if the intermode coupling is weak, then the solution which takes advantage of as 
many modes as possible will minimize the free energy because minimizing free energy 
is often associated with maximizing some transport property (e.g. heat) and this is best 
done when each mode draws on the source equally and (almost) independently. 
However, it is important to realize that as N +CO, modes become denser on the unit 
circle and since lim,,o p (  0 )  = 2P0 is a general property of the coupling function, some 
interactions will in fact be locally stronger than the self interaction, so that p in general 
will not be diagonally dominant. Nevertheless, the basic idea still holds and by judicious 
choices of E’,  qk,  r‘, in (4) we can construct a coupling function P ( B )  which leads to 
a turbulent crystal. In fact, for large n, the sum in (4) can he approximated by an 
integral and one can (by contour integration) find the measure (the continuum limit 
of r;) such that the resulting function @ ( e )  has any prescribed shape. In particular, 
the distance over which P ( 0 )  is not p can be made arbitrarily small. For example, we 
may choose the squares of the preferred wavenumbers qk for the subsidiary fields U, 
to lie between 0 and 4 so that the zeros of q’, -27 2 cos 0 are densely distributed along 
0 < B < T. Then the weights r’, can be chosen so that the resulting measure obtained 
by converting the sum in (4) to an integral gives rise to a top hat shape. When this is 
subtracted from 24a1 (we can take ay,=O), we obtain a graph of P ( B ) ,  0s 8sv/2,  
which takes the value Zpo for OC 0 C Bo. Bo arbitrary, and the positive value P<< Po 
for Bo< 0 < v/Z. The turbulent crystal occurs when Bo is small. In order to make the 
transition at Bo sharp, however, E’ must be very small and since the analysis requires 
p<< E’, this means the range of p over which the turbulent crystal solutions are realized 
is also small. In general, the function p ( 8 )  will have a much smoother shape and this 
coupled with the fact that lime-oP(B)=2Po means that turbulent crystals may be 
relatively rare. Continuing work is aimed at estimating how rare. Clearly there is much 
non-trivial physics involved, first in identifying the critical ingredients which lead to 

The key idea is to recognize that if the matrix 

t One might think that one can use the convolution form of 0,) (i .e.=@(lj-fl(n/N))) to diagonalize the 
double sum in ( 2 )  via a Fourier transform. It will, but the Fourier coefficients of the positive quantities IAf 
and lAf are not independent and are related in a non-trivial way. making it diatcult to draw concrete 
conclusions. 
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a realization of turbulent crystals and second in obtaining a measure of how common 
or how rare these states may be. 

Given that the turbulent crystal solution obtains, we can calculate the statistical 
properties of the asymptotic field 

where ( p ) =  (pa+. . . + p N - , ) / N .  Since each c$~ is randomly distributed over (-T, a), 
then, for a fixed x, w has a Gaussian distribution with zero mean. Of more interest, 
however, is the two point spatial correlation (w&, y)wm(x', y ' ) )  which, because of 
rotational invariance, we can calculate by setting y = y' = 0. We find 

(wco(% O)Wm(x', 0)) 

The decay for large separation distances is weak (algebraic) and oscillatory and the 
distance over which the correlation is successively zero is the pattem wavelength. 

We end this letter with two examples of rotationally symmetric systems with infinite 
degeneracy and briefly discuss modifications which may lead to turbulent crystals. The 
grandaddy of canonical examples of pattern forming systems with infinite degeneracy 
is Rayleigh-Benard convection in ordinary fluids, binary mixtures and liquid crystals 
in large aspect ratio boxes. In single layers, complicated time dependence is often seen 
but complicated spatial dependence can also occur when the dynamics is non-gradient 
because of modulational instabilities or defect formation. However, it may also he 
possible to construct multilayer systems with the properties of the adjacent layers (with 
fields U,) chosen appropriately to produce a coupling coefficient so that the overall 
dynamics is relaxational and the main layer (with field w) exhibits the kinds of behaviour 
suggested here. The necessary coupling to adjacent fields may be easier to realize in 
optical contexts. Because of an increased interest in the nature of optical turbulence, 
there has been much activity in recent months in wide gainband lasers in which a large 
number of transverse modes are excited [ 113. In particular in a two-level laser (e.g. 
CO2 laser) with almost planar mirrors, all transverse modes can be excited and, in 
order to offset the positive detuning i2 between the cavity and two-level atom frequen- 
cies, the system will elect to lase by pickinga wavevector (ks, ky, k,) where a(k:+ k;) = 
yl2 (a measures diffraction, y is the homogeneous broadening associated with the 
medium polarization). Again, a circle of modes destabilizes at the same value of the 
laser pump. Already in a single CO2 laser, time independent and time dependent 
patterns (of an approximately square shape) have been observed by Glorieux et al 
[ 121. It should not be too difficult to find ways to couple such systems in a way that 
leads to all modes on the critical circle participating in the final state. 

We are grateful to AFOSR contract FQ8671-900589 and NSF grants DMS 8922179 
and DMS 9021253 for support, and to Rob Indik for numerical simulations and many 
useful discussions. 
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